def get_data_woa2009(variables,grid_order=('lon','lat','z','time',)): # get_data_woa2009(variables,grid_order) ################################################# # written by : Gabriel Wolf, g.a.wolf@reading.ac.uk # adapted from get_woa2009_data.m of Remi Tailleux # last modified : 13.09.2018 # Content/Description #################################################################### # Loading data from the 2009 version of the Levitus World Ocean Atlas # References: # - for temperature: Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. # Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: World # Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas # NESDIS 68, 184 pp. # -> PDF : https://www.nodc.noaa.gov/OC5/indpub.html#woa09 # - for salinity : Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. # Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. # Johnson, 2010: World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, # Ed. NOAA Atlas NESDIS 69, 184 pp. # -> PDF : https://www.nodc.noaa.gov/OC5/indpub.html#woa09 # ######################################################################################## print ' Load WOA2009 data' dir_data = '/glusterfs/inspect/users/xg911182/data/WOA2009/' grid_names = ('lon','lat','depth','time',) # import modules %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import numpy as np from netCDF4 import Dataset # to read netcdf files from mydata_classes import Grid # class containing grid information import myconstants as my_const # my own defined constants from mycalc_ocean import calc_theta_from_temp # Allocation and Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # define grid_order (used for data permutation) find_index = lambda searchlist, elem: [[i for i, x in enumerate(searchlist) if x == e] for e in elem] grid_order = np.squeeze(np.array(find_index(('lon','lat','z','time',),grid_order))) list_allkeys = variables.keys() # Allocation data = {} grd = [] # Read grid information (for all variables identical) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print ' -> Read grid information' if 'grd' in list_allkeys: fn = dir_data + 'temperature_annual_1deg.nc' nc_fid = Dataset(fn,'r') LON = np.array(nc_fid.variables[grid_names[0]]) LAT = np.array(nc_fid.variables[grid_names[1]]) Z = np.array(nc_fid.variables[grid_names[2]]) TIME = nc_fid.variables[grid_names[3]] Ulon = nc_fid.variables[grid_names[0]].units Ulat = nc_fid.variables[grid_names[1]].units Uz = nc_fid.variables[grid_names[2]].units Ut = nc_fid.variables[grid_names[3]].units grd = Grid(LON,LAT,Z,TIME,len(LON),len(LAT),len(Z),len(TIME), Ulon, Ulat, Uz, Ut) # define data permutation to match input dimensions nc_fid.variables['t_an'].dimensions # read salinity data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if 's' in list_allkeys: print ' -> Read salinity data' fn = dir_data + 'salinity_annual_1deg.nc' nc_fid = Dataset(fn,'r') # read salinity data DATA_d = nc_fid.variables['s_an'] MASK = np.array(DATA_d)!=DATA_d._FillValue data_perm = np.squeeze(np.asarray(find_index(DATA_d.dimensions,[grid_names[i] for i in grid_order]))) varname = 's' data[varname] = {} data[varname]['val'] = np.array(DATA_d).transpose(data_perm) data[varname]['units'] = DATA_d.units data[varname]['fill_value'] = DATA_d._FillValue data[varname]['standard_name'] = DATA_d.standard_name data[varname]['valid'] = MASK.transpose(data_perm) # Read temperature data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if 'temp' or 'theta' in list_allkeys: print ' -> Read temperature data' fn = dir_data + 'temperature_annual_1deg.nc' nc_fid = Dataset(fn,'r') # read temperature data DATA_d = nc_fid.variables['t_an'] data_perm = np.squeeze(np.asarray(find_index(DATA_d.dimensions,[grid_names[i] for i in grid_order]))) TEMP = np.array(DATA_d) MASK = TEMP!=DATA_d._FillValue if 'temp' in list_allkeys: varname = 'temp' data[varname] = {} data[varname]['val'] = TEMP.transpose(data_perm) data[varname]['units'] = DATA_d.units data[varname]['fill_value'] = DATA_d._FillValue data[varname]['standard_name'] = DATA_d.standard_name data[varname]['valid'] = MASK.transpose(data_perm) # compute potential temperature for valid points ------------------------------------- if 'theta' in list_allkeys: print ' -> Compute potential temperature from temperature' THETA = np.copy(TEMP).transpose(data_perm) SA = data['s']['val'] SA = SA[data['s']['valid']] wvar = nc_fid.variables[DATA_d.dimensions[data_perm[0]]] xvar = nc_fid.variables[DATA_d.dimensions[data_perm[1]]] yvar = nc_fid.variables[DATA_d.dimensions[data_perm[2]]] zvar = nc_fid.variables[DATA_d.dimensions[data_perm[3]]] w3d, x3d, y3d, z3d = np.meshgrid(xvar,wvar,yvar,zvar) p = y3d*(my_const.rho0*my_const.grav/1e4) # in dbar del w3d, x3d, y3d, z3d, wvar, xvar, yvar, zvar pr = p*0.0 print ' *** why do I set p_ref=0? ***' MASK_mesh = data[varname]['valid'] THETA[MASK_mesh] = calc_theta_from_temp(SA,THETA[MASK_mesh],\ p[MASK_mesh],pr[MASK_mesh]) varname = 'theta' data[varname] = {} data[varname]['val'] = THETA data[varname]['units'] = DATA_d.units data[varname]['fill_value'] = DATA_d._FillValue data[varname]['standard_name'] = 'sea_water_potential_temperature' data[varname]['valid'] = MASK.transpose(data_perm) # return data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if 'grd' in list_allkeys: return grd, data else: return data