def get_data_woa2009(variables): # get_data_woa2009(variables) ############################################################ # written by : Gabriel Wolf, g.a.wolf@reading.ac.uk # adapted from get_woa2009_data.m of Remi Tailleux # last modified : 13.09.2018 # Content/Description #################################################################### # Loading data from the 2009 version of the Levitus World Ocean Atlas # References: # - for temperature: Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. # Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: World # Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas # NESDIS 68, 184 pp. # -> PDF : https://www.nodc.noaa.gov/OC5/indpub.html#woa09 # - for salinity : Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. # Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. # Johnson, 2010: World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, # Ed. NOAA Atlas NESDIS 69, 184 pp. # -> PDF : https://www.nodc.noaa.gov/OC5/indpub.html#woa09 # ####################################################################################### print 'Use of get_data_woa2009 in get_data.py' dir_data = '/glusterfs/inspect/users/xg911182/data/WOA2009/' grid_names = ('lon','lat','depth','time',) # import modules import numpy as np from netCDF4 import Dataset # to read netcdf files from mydata_classes import Grid # Allocation data = {} grd = [] list_allkeys = variables.keys() # Read grid information (for all variables identical) print 'Check if all WOA data is using the same grid' if 'grd' in list_allkeys: fn = dir_data + 'temperature_annual_1deg.nc' nc_fid = Dataset(fn,'r') LON = np.array(nc_fid.variables[grid_names[0]]) LAT = np.array(nc_fid.variables[grid_names[1]]) Z = np.array(nc_fid.variables[grid_names[2]]) TIME = nc_fid.variables[grid_names[3]] Ulon = nc_fid.variables[grid_names[0]].units Ulat = nc_fid.variables[grid_names[1]].units Uz = nc_fid.variables[grid_names[2]].units Ut = nc_fid.variables[grid_names[3]].units grd = Grid(LON,LAT,Z,TIME,len(LON),len(LAT),len(Z),len(TIME), Ulon, Ulat, Uz, Ut) # Read temperature data if 'temp' or 'theta' in list_allkeys: print 'Load temperature data' fn = dir_data + 'temperature_annual_1deg.nc' nc_fid = Dataset(fn,'r') # read temperature data DATA_d = nc_fid.variables['t_an'] if 'temp' in list_allkeys: varname = 'temp' data[varname] = {} data[varname]['val'] = np.array(DATA_d) data[varname]['units'] = DATA_d.units data[varname]['fill_value'] = DATA_d._FillValue if 'theta' in list_allkeys: print 'MISSING: Calculate pot. temp. from temperature data' # read salinity data if 's' in list_allkeys: print 'Load salinity data' fn = dir_data + 'salinity_annual_1deg.nc' nc_fid = Dataset(fn,'r') # read salinity data DATA_d = nc_fid.variables['s_an'] varname = 's' data[varname] = {} data[varname]['val'] = np.array(DATA_d) data[varname]['units'] = DATA_d.units data[varname]['fill_value'] = DATA_d._FillValue # return data if 'grd' in list_allkeys: return grd, data else: return data