Test/get_data.py

124 lines
6.7 KiB
Python

def get_data_woa2009(variables,grid_order=('lon','lat','z','time',)):
# get_data_woa2009(variables,grid_order) #################################################
# written by : Gabriel Wolf, g.a.wolf@reading.ac.uk
# adapted from get_woa2009_data.m of Remi Tailleux
# last modified : 13.09.2018
# Content/Description ####################################################################
# Loading data from the 2009 version of the Levitus World Ocean Atlas
# References:
# - for temperature: Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E.
# Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: World
# Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas
# NESDIS 68, 184 pp.
# -> PDF : https://www.nodc.noaa.gov/OC5/indpub.html#woa09
# - for salinity : Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V.
# Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R.
# Johnson, 2010: World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus,
# Ed. NOAA Atlas NESDIS 69, 184 pp.
# -> PDF : https://www.nodc.noaa.gov/OC5/indpub.html#woa09
# ########################################################################################
print ' Load WOA2009 data'
dir_data = '/glusterfs/inspect/users/xg911182/data/WOA2009/'
grid_names = ('lon','lat','depth','time',)
# import modules %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
import numpy as np
from netCDF4 import Dataset # to read netcdf files
from mydata_classes import Grid # class containing grid information
import myconstants as my_const # my own defined constants
from mycalc_ocean import calc_theta_from_temp
# Allocation and Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# define grid_order (used for data permutation)
find_index = lambda searchlist, elem: [[i for i, x in enumerate(searchlist) if x == e] for e in elem]
grid_order = np.squeeze(np.array(find_index(('lon','lat','z','time',),grid_order)))
list_allkeys = variables.keys()
# Allocation
data = {}
grd = []
# Read grid information (for all variables identical) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
print ' -> Read grid information'
if 'grd' in list_allkeys:
fn = dir_data + 'temperature_annual_1deg.nc'
nc_fid = Dataset(fn,'r')
LON = np.array(nc_fid.variables[grid_names[0]])
LAT = np.array(nc_fid.variables[grid_names[1]])
Z = np.array(nc_fid.variables[grid_names[2]])
TIME = nc_fid.variables[grid_names[3]]
Ulon = nc_fid.variables[grid_names[0]].units
Ulat = nc_fid.variables[grid_names[1]].units
Uz = nc_fid.variables[grid_names[2]].units
Ut = nc_fid.variables[grid_names[3]].units
grd = Grid(LON,LAT,Z,TIME,len(LON),len(LAT),len(Z),len(TIME), Ulon, Ulat, Uz, Ut)
# define data permutation to match input dimensions
nc_fid.variables['t_an'].dimensions
# read salinity data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 's' in list_allkeys:
print ' -> Read salinity data'
fn = dir_data + 'salinity_annual_1deg.nc'
nc_fid = Dataset(fn,'r')
# read salinity data
DATA_d = nc_fid.variables['s_an']
MASK = np.array(DATA_d)!=DATA_d._FillValue
data_perm = np.squeeze(np.asarray(find_index(DATA_d.dimensions,[grid_names[i] for i in grid_order])))
varname = 's'
data[varname] = {}
data[varname]['val'] = np.array(DATA_d).transpose(data_perm)
data[varname]['units'] = DATA_d.units
data[varname]['fill_value'] = DATA_d._FillValue
data[varname]['standard_name'] = DATA_d.standard_name
data[varname]['valid'] = MASK.transpose(data_perm)
# Read temperature data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 'temp' or 'theta' in list_allkeys:
print ' -> Read temperature data'
fn = dir_data + 'temperature_annual_1deg.nc'
nc_fid = Dataset(fn,'r')
# read temperature data
DATA_d = nc_fid.variables['t_an']
data_perm = np.squeeze(np.asarray(find_index(DATA_d.dimensions,[grid_names[i] for i in grid_order])))
TEMP = np.array(DATA_d)
MASK = TEMP!=DATA_d._FillValue
if 'temp' in list_allkeys:
varname = 'temp'
data[varname] = {}
data[varname]['val'] = TEMP.transpose(data_perm)
data[varname]['units'] = DATA_d.units
data[varname]['fill_value'] = DATA_d._FillValue
data[varname]['standard_name'] = DATA_d.standard_name
data[varname]['valid'] = MASK.transpose(data_perm)
# compute potential temperature for valid points -------------------------------------
if 'theta' in list_allkeys:
print ' -> Compute potential temperature from temperature'
THETA = np.copy(TEMP).transpose(data_perm)
SA = data['s']['val']
SA = SA[data['s']['valid']]
wvar = nc_fid.variables[DATA_d.dimensions[data_perm[0]]]
xvar = nc_fid.variables[DATA_d.dimensions[data_perm[1]]]
yvar = nc_fid.variables[DATA_d.dimensions[data_perm[2]]]
zvar = nc_fid.variables[DATA_d.dimensions[data_perm[3]]]
w3d, x3d, y3d, z3d = np.meshgrid(xvar,wvar,yvar,zvar)
p = y3d*(my_const.rho0*my_const.grav/1e4) # in dbar
del w3d, x3d, y3d, z3d, wvar, xvar, yvar, zvar
pr = p*0.0
print ' *** why do I set p_ref=0? ***'
MASK_mesh = data[varname]['valid']
THETA[MASK_mesh] = calc_theta_from_temp(SA,THETA[MASK_mesh],\
p[MASK_mesh],pr[MASK_mesh])
varname = 'theta'
data[varname] = {}
data[varname]['val'] = THETA
data[varname]['units'] = DATA_d.units
data[varname]['fill_value'] = DATA_d._FillValue
data[varname]['standard_name'] = 'sea_water_potential_temperature'
data[varname]['valid'] = MASK.transpose(data_perm)
# return data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 'grd' in list_allkeys:
return grd, data
else:
return data